Naos v1.x

From Alteeve Wiki
Revision as of 00:41, 1 March 2010 by Digimer (talk | contribs) (→‎Code)
Jump to navigation Jump to search

 Node Assassin :: Naos v1.x


Release

  • Last update: Feb. 28, 2010
  • Tested Against: Arduino Alpha v0017 x86
  • Naos Version: 1.0.3

Notes

WARNING

USE THIS CODE AT YOUR OWN RISK!

It's the default warning for everything related to this project, but it's worth repeating here. This code come with no guarantee in any way, shape or form. This has only been tested on my board, the Arduino Duemilanove with the ATmega320 chip connected to the Wiznet W5100 ethernet shield. I can't guarantee it will work on any other hardware, but I would love to hear from you if you do try it elsewhere!

Changes To Make BEFORE Uploading

Before you upload this, be sure to set an IP address and MAC address that suits your network.

  • Change the network address to fit your network. The defaults are:
    • IP Addr: 192.168.1.66
    • Netmask: 255.255.255.0
    • Gateway: 192.168.1.1
  • In the sketch below, alter the byte mac[] value to a value unique on you network. To be honest, the default is probably ok.

Use

Copy this code into the 'Arduino alpha' loader, test it and then upload it to your board.

Thanks

The majority of this first version was made possible thanks the generous patience of Mark Loit at hacklab.to who spent the day giving me a crash course in C and helping me diagnose my first circuit. He also gets the credit for the project's tag line.

Code

#include <Ethernet.h>	// Arduino's ethernet library.
#include <ctype.h>	// Library for testing and character manipulation.
#include <stdint.h>	// Library for standard integer types (guarantees the size of an int).
#include <stdlib.h>	// Library for things like 'sizeof()' and 'itoa()'.

/*
Author:
 - Digimer
 
Version: 1.0.3
 - Release: 2010-02-28

License:
 - The GNU GPL v2.0

Thanks:
 - Hacklab.TO:       The idea for this device was born there.
 - Christopher Olah; Came up with the name "Node Assassin".
 - Mark Loit:        Taught me enough C to write version 1.0 of NaOS!

Bugs:
 - None known at this time.

Protocol:
 - Telnet (or similar) to the IP and Port set below.
  - To query the state of the nodes, send:
    - 00:0
  - The integer after the '00:' is reserved for future queries.
 - To set the state of a node, send:
  - XX:Y
  - XX is the zero-padded node ID number; 01, 02, 03, 04 or 05
  - Y  is the state to set
    - 0 fences the requested node.
    - 1 releases the fence and lets the node boot.
    - 2 Fence for one second. Useful for rebooting a node or for when a port
        is connected to a node's power button to boot or gracefully power down
        a node (via ACPI).
    - 3 Fence for five seconds. Only useful when connected to a power button.
        This allows the Node Assassin to force a frozen server to power off.
 - Example:
   - To fence Node 01, send:
     - 01:0
   - To release the fence and thus let the node boot, send:
     - 01:1
 - Sending any other non-standard command will generate an error message and no
   action will be taken.
  
Note:
 - This device implements NO security. You MUST install in on a private, secure
   intranet or similar back channel. Installing it on the same LAN as the
   storage devices is advised. 
 - Changing this file will have no effect until the program is recompiled and
   uploaded to the Node Assassin.
   
To Do:
 - Make naming the device and setting it's network settings configurable.

Changes:
 - v1.0.2
   - First release.
 - v1.0.3
   - Added the '00:1' query message which returns the Node Assassin's details
     and identification.
   - Added the '##:2' and '##:3' options.
*/

// MAC Address; Array of six bytes.
// MAC address provided by Mark Loit.
byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE };

// Arduino IP, netmask and gateway.
byte ip[] = { 192, 168, 1, 66 };
// byte ip[] = { 192, 168, 111, 66 };
// byte ip[] = { 10, 255, 0, 66 };

// Netmask defaults to 255.255.255.0.
// byte nm[] = { 255, 255, 255, 0 };
byte nm[] = { 255, 255, 255, 0 };

// Default gateway defaults to IP with the last octal set to 1.
byte dg[] = { 192, 168, 1, 1 };
// byte dg[] = { 192, 168, 111, 1 };
// byte dg[] = { 10, 255, 255, 254 };

// The user-set name of the node, up to sixteen characters long.
char nodeName[16]="Ariel";

// The serial number.
char serialNumber[7]="NA0001";
char osVersion[7]="v1.0.3";
char buildDate[11]="2010-02-26";

// This is the port that I will listen on.
#define PORT 238

// Setup the server.
Server server = Server(PORT);

// Setup my digital out pins.
// CONSTRAINT: Output pins must be ssigned sequentially
#define NODECOUNT    8
#define FIRSTNODEPIN 2

// My function prototypes.
void printError(const char *message);
void printMessage(const char *message);

// Setup the Arduino on boot.
void setup()
{
	// Setup the IP info.
	Ethernet.begin(mac, ip, dg, nm);
	
	// Print the serial port welcom message.
	Serial.begin(9600);
// 	Serial.println("Node Assassin: 'Ariel' now listening for orders.");
	Serial.print("Node Assassin: '"); Serial.print(nodeName); Serial.println("' now listening for orders.");
	
	// Iterator to setup the digital pins to output and to set them
	// initially to LOW.
	for (int pin = FIRSTNODEPIN; pin < (FIRSTNODEPIN+NODECOUNT); pin++)
	{
		pinMode(pin, OUTPUT);
		digitalWrite(pin, LOW);
	}
	
	// Start the server listening for connections.
	server.begin();
}

// And GO!
void loop()
{	
	// Variables
	uint8_t node=0;		// The node that will work on.
	uint8_t state=0;	// The state of the node.
	char nodeASCII[3];	// ASCII representation of node number. This is
				// '3' because of 'first char' + 'second char' + terminating <NUL>
	char command[5];	// 5 chars "XX:Y" + <NUL>
	int  index = 0;		// Just an index to increment and reset in loops.
	char macString[6];	// MAC address.
	
	// Start the network library.
	Client client=server.available();
	if (client)
	{
		// process the input in a line-based manner, allowing for 1 command per line
		while ((-1 != (command[index] = client.read()) ) && (5 > index))
		{
			// exit at the end of line
			if( ('\n' == command[index]) || ('\r' == command[index]) )
			{
				break; // EOL found, break out of the while loop.
			}
			index++; // advance the index.
		}
		// on a valid line the above while loop will exit with index == 4
		
		// If there is no message, nothing to do but exit. 
		// Coding note: By putting 0 first, I can never accidentally
		// set the variable to '0' with an accidental single-equal.
		if (0 == index)
		{
			return;
		}
		
		// sanity check on length
		if (4 > index)
		{
			printMessage("Message too short. Format is 'XX:Y' where 'XX' is the zero-padded node number and Y is the state to set.\n");
			return;
		}
		
		// Spool off whatever is left in the buffer/line in case it was a string longer than 4.
		if (5 == index)
		{
			char ch;
			printMessage("Message too long. Format is 'XX:Y' where 'XX' is the zero-padded node number and Y is the state to set.\n");
			while (-1 != (ch = client.read()) )
			{
				// exit at the end of line
				if( ('\n' == ch) || ('\r' == ch) )
				{
					break; // break out of the while loop
				}
			}
			return;
		}
		
		// <NUL> terminate the string
		command[index] = 0;
		
		// Parse the string; Error if anything isn't right.
		// Make sure we have a colon in the right location
		if (':' != command[2])
		{
			// Error
			printError(command);
			return;
		}
		// Make sure the other characters are digits
		if (!isdigit(command[0]) || !isdigit(command[1]) || !isdigit(command[3]))
		{
			// Error
			printError(command);
			return;
		}
		
		// No need to check for the terminator or newline at the end,
		// that was taken care of in the read loop.
		// Do the math to turn the ASCII node number into a binary
		// value.
		node=command[0]-'0';	// First digit convertion (ie: '1' (0x31)-'0' (0x30) = 0x01 = "0000 0001 (dec. 1)").
		node*=10;		// Shift to the first base-10 position.
		node+=command[1]-'0';	// Now 'node' contains the binary version of the ASCII two-digit value read off of telnet.
		
		// Do the math to turn the state number into a binary value.
		state=command[3]-'0';	// Now 'state' contains the binary version.
		
		// copy the ASCII node name for the response messages [so we don't have to convert it back later]
		nodeASCII[0] = command[0];
		nodeASCII[1] = command[1];
		nodeASCII[2] = 0; // <NUL> terminate it
		
		// Check the node.
		if (node > NODECOUNT)
		{
			// Node number can't be higher than NODECOUNT.
			
			// Make my NODECOUNT an ASCII value so that I can print it by reversing the convertion to binary done earlier.
			// the below 2 lines will be converted by the compiler, so there is no run-time penalty for the math here
			nodeASCII[0]=(NODECOUNT/10)+'0';	// Move from the 'tens' posiition into the '1' position and add '0' to get the ASCII value.
			nodeASCII[1]=(NODECOUNT%10)+'0';	// The modulous returns my real one position.
			// nodeASCII was <NUL> terminated earlier at 3, so no need to do it again here
			
			printMessage("This fence supports up to "); printMessage(nodeASCII); printMessage("nodes.\n");
			return;
		}
		
		// Check that the requested state is sane.
		if (state > 3)
		{
			// Node state can't be higher than '1' on this model.
			printMessage("Invalid state received. Send '##:0' to kill a node, ##:1 to release a node, ##:2 to send a one second fence and ##:3 to send a 10 second fence.\n");
			return;
		}
		
		// Check is this is an info request.
		if (0 == node)
		{
			// If the message request is '0', return states.
			// If the message request is '1', return NA info.
			
			if (0 == state)
			{
				// Send states
				printMessage("Node states: \n");
				
				// Make my NODECOUNT an ASCII value so that I can print it by reversing the convertion to binary done earlier.
				// the below 2 lines will be converted by the compiler, so there is no run-time penalty for the math here
				nodeASCII[0]=(NODECOUNT/10)+'0';	// Move from the 'tens' posiition into the '1' position and add '0' to get the ASCII value.
				nodeASCII[1]=(NODECOUNT%10)+'0';	// The modulous returns my real one position.
				// nodeASCII was <NUL> terminated earlier at 3, so no need to do it again here
				
				printMessage("- Max Node: "); printMessage(nodeASCII); printMessage("\n");
				
				/*
				Future optimization:
				The division and modulus in the loop can be expensive
				processing wise, as the compiler cannot do the
				calculation at compile time. As we are simply
				itteratively looping and incrementing, we can increment
				the ASCII value directly, removing the need for any
				division or modulus operations.
				*/
				
				for (int i=0; i<NODECOUNT; i++)
				{
					// 'i' is the current, zero-based node number.
					nodeASCII[0]=((i+1)/10)+'0';	// The '+1' makes the node 1-based instead of 0-based.
					nodeASCII[1]=((i+1)%10)+'0';	// The modulous returns my real one position.
					
					state = digitalRead(i+FIRSTNODEPIN);	// i + pin offset.
					printMessage("- Node "); printMessage(nodeASCII); printMessage((LOW == state) ? ": Running\n" : ": Fenced!\n");
				}
				printMessage("End Message.\n");
			}
			else if (1 == state)
			{
				/* Setup some strings. */
				// MAC address.
				printMessage("Node info: \n");
				char macASCII[18]; // Enough room for 6 bytes
						   // of hex [12 digits], colon
						   // seperators (:) and the
						   // NULL terminator
				char ipASCII[16];  // IP address with '.'s.
				char nmASCII[16];  // Now the netmask
				char dgASCII[16];  // and the default gateway.
				int j=0;
				for(int i=0; i < (sizeof(mac) / sizeof(mac[0])); i++)
				{
					// If I have a value, that is, is '1'
					// or higher, start by inserting a 
					// period (.) to seperate the octets.
					// This method avoids a preceeding '.'.
					if (i)
					{
						macASCII[j++] = ':';
					}
					// We're dealing with two characters,
					// so if this value is less than 16
					// (0000 1111), add a leading '0'.
					if (mac[i]<16)
					{
						macASCII[j] = '0';
						itoa(mac[i], &macASCII[(j)+1], 16);
					}
					else
					{
						itoa(mac[i], &macASCII[j], 16);
					}
					j+=2;
				}
				
				// IP, netmask and default gateway.
				j=0;
				for (int i=0; i < (sizeof(ip) / sizeof(ip[0])); i++)
				{
					// If I have a value, that is, is '1'
					// or higher, start by inserting a 
					// period (.) to seperate the octets.
					// This method avoids a preceeding '.'.
					if (i)
					{
						ipASCII[j++] = '.';
					}
					// Convert the integer to an ASCII.
					itoa(ip[i], &ipASCII[j++], 10);
					// Increment 'j' one or two places,
					// depending on the value of 'j'.
					if(ip[i]>9) j++;
					if(ip[i]>99) j++;
				}
				j=0;
				for (int i=0; i < (sizeof(nm) / sizeof(nm[0])); i++)
				{
					// If I have a value, that is, is '1'
					// or higher, start by inserting a 
					// period (.) to seperate the octets.
					// This method avoids a preceeding '.'.
					if (i)
					{
						nmASCII[j++] = '.';
					}
					// Convert the integer to an ASCII.
					itoa(nm[i], &nmASCII[j++], 10);
					// Increment 'j' one or two places,
					// depending on the value of 'j'.
					if(nm[i]>9) j++;
					if(nm[i]>99) j++;
				}
				j=0;
				for (int i=0; i < (sizeof(ip) / sizeof(ip[0])); i++)
				{
					// If I have a value, that is, is '1'
					// or higher, start by inserting a 
					// period (.) to seperate the octets.
					// This method avoids a preceeding '.'.
					if (i)
					{
						dgASCII[j++] = '.';
					}
					// Convert the integer to an ASCII.
					itoa(dg[i], &dgASCII[j++], 10);
					// Increment 'j' one or two places,
					// depending on the value of 'j'.
					if(dg[i]>9) j++;
					if(dg[i]>99) j++;
				}
				// Make my NODECOUNT an ASCII value so that I can print it by reversing the convertion to binary done earlier.
				// the below 2 lines will be converted by the compiler, so there is no run-time penalty for the math here
				nodeASCII[0]=(NODECOUNT/10)+'0';	// Move from the 'tens' posiition into the '1' position and add '0' to get the ASCII value.
				nodeASCII[1]=(NODECOUNT%10)+'0';	// The modulous returns my real one position.
				
				// Print the info.
				printMessage("- Node Name: ..... "); printMessage(nodeName); printMessage("\n");
				printMessage("- Port Count: .... "); printMessage(nodeASCII); printMessage("\n");
				printMessage("- NAOS Version: .. "); printMessage(osVersion); printMessage("\n");
				printMessage("- Serial Number: . "); printMessage(serialNumber); printMessage("\n");
				printMessage("- Build Date: .... "); printMessage(buildDate); printMessage("\n");
				printMessage("- MAC address: ... "); printMessage(macASCII); printMessage("\n");
				printMessage("- IP address: .... "); printMessage(ipASCII); printMessage("\n");
				printMessage("- Subnet Mask: ... "); printMessage(nmASCII); printMessage("\n");
				printMessage("- Default Gateway: "); printMessage(dgASCII); printMessage("\n");
				printMessage("End Message.\n");
			}
			else
			{
				// Unrecognized message request.
				printMessage("Unknown message request ID. '00:0' returns node states, '00:1' returns Node Assassin information.\n");
			}
			
			return;
		}
		
		// Subtract 1 from node to make it zero-based.
		node--;
		// Set the pin based on whether 'state' is '0' or not.
		if (0 == state)
		{
			// Fence the node
			digitalWrite(node+FIRSTNODEPIN, HIGH);
			printMessage("Node "); printMessage(command); printMessage(": Now Fenced!\n");
		}
		else if (1 == state)
		{
			// Release the node.
			digitalWrite(node+FIRSTNODEPIN, LOW);
			printMessage("Node "); printMessage(command); printMessage(": Fence released!\n");
		}
		else if (2 == state)
		{
			// Fence for 1 second.
			printMessage("Node "); printMessage(command); printMessage(": Fencing for 1 second - ");
			digitalWrite(node+FIRSTNODEPIN, HIGH);
			delay(1000);
			digitalWrite(node+FIRSTNODEPIN, LOW);
			printMessage("Fence released.\n");
		}
		else if (3 == state)
		{
			// Fence for 5 seconds.
			printMessage("Node "); printMessage(command); printMessage(": Fencing for 5 seconds - ");
			digitalWrite(node+FIRSTNODEPIN, HIGH);
			delay(5000);
			digitalWrite(node+FIRSTNODEPIN, LOW);
			printMessage("Fence released.\n");
		}
	}
}

// The error handling function.
void printError(const char *message)
{
	// Print the message to the serial bus and the client.
	// I know this is dirty but it represents the one line string.
	printMessage("Bad command: [" ); printMessage(message); printMessage("]\n" );
}

void printMessage(const char *message)
{
	// Print the message to the serial bus and the client.
	Serial.print(message);
	server.write(message);
}

 

Input, advice, complaints and meanderings all welcome!
Digimer digimer@alteeve.ca https://alteeve.ca/w legal stuff:  
All info is provided "As-Is". Do not use anything here unless you are willing and able to take resposibility for your own actions. © 1997-2013
Naming credits go to Christopher Olah!
In memory of Kettle, Tonia, Josh, Leah and Harvey. In special memory of Hannah, Jack and Riley.